Alert

High risk of hypoglycaemia. Insulin binds to the plastic of giving sets. Flush the plastic tubing with 20 mL of prepared insulin solution into a receptacle prior to connecting to the infant. This is to saturate the binding. Insulin concentrations ≤ 0.05 Unit/mL are not reliably delivered even after preconditioning and flushing.

Indication

Treatment of persistent hyperglycaemia. [For treatment of hyperkalaemia, see Insulin – hyperkalaemia].

Action

Insulin is a polypeptide hormone that acts on cells throughout the body to stimulate uptake, utilisation and storage of glucose resulting in a lowering of blood glucose. Insulin stimulates the liver to store glucose in the form of glycogen and facilitates the entry of glucose into muscle and adipose tissue. It inhibits lipolysis, proteolysis and gluconeogenesis, enhances protein synthesis and conversion of excess glucose into fat.

Drug Type

Polypeptide hormone – lowers blood glucose.

Trade Name

Actrapid [Novo Nordisk]
Humulin R [Eli Lilly]
Hypurin Neutral Injection [Aspen]

Presentation

Vial: 100 units/mL in a 10 mL vial and 3 mL Pen-fill.

Dosage/Interval

Treatement of hyperglycaemia:
Intravenous:
Starting dose: 0.05 unit/kg/hour.
Dose range: 0.01 to 0.1 unit/kg/hour.
Titrating in small increments to blood glucose: Target blood glucose 8 to 10 mmol/L [1, 2].

Route

IV

Preparation/Dilution

SINGLE STRENGTH INFUSION (suitable if weight > 1 kg)

<table>
<thead>
<tr>
<th>Infusion strength</th>
<th>Prescribed amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mL/hour = 0.1 unit/kg/hour</td>
<td>5 unit/kg insulin and make up to 50 mL</td>
</tr>
</tbody>
</table>

FURTHER DILUTE: 2.5 mL/kg (5 units/kg) of the above solution and dilute with glucose 5%, glucose 10% or sodium chloride 0.9% to a final volume of 50 mL with a concentration of 0.1 unit/kg in each mL.

Infusion at 1 mL/h = 0.1 unit/kg/hour

DOUBLE STRENGTH INFUSION

<table>
<thead>
<tr>
<th>Infusion strength</th>
<th>Prescribed amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mL/hour = 0.2 unit/kg/hour</td>
<td>10 unit/kg insulin and make up to 50 mL</td>
</tr>
</tbody>
</table>

FURTHER DILUTE: 5 mL/kg (10 unit/kg) of the above solution and dilute with glucose 5%, glucose 10% or sodium chloride 0.9% to a final volume of 50 mL with a concentration of 0.2 unit/kg in each mL.

Infusion at 1 mL/h = 0.2 unit/kg/hour

Administration

Intravenous: Insulin binds to the plastic of giving sets. Flush the plastic tubing with 20 mL of prepared insulin solution into a receptacle prior to connecting to the infant. This is to saturate the binding.

Do not filter infusion. Insulin also binds to the filter.

Can be infused with maintenance fluids. Recommend attaching insulin infusion after the filter.

Do not bolus other drugs through this line.

Monitoring

Blood glucose concentration
Initiation: Every 30 minutes until stabilised.
Stabilisation: 4–6 hourly
After cessation of infusion: At 30 minutes and at 1 hour
Alteration of infusion: Within 1 hour

Serum potassium concentration.
Contraindications
Hypersensitivity to regular insulin or any of its components. During episodes of hypoglycaemia.

Precautions
Hypoglycaemia is a common adverse effect. Blood glucose must be monitored closely to detect hypoglycaemia.

Do not adjust the rate of the maintenance solution or other infusions when insulin is commenced or the insulin infusion rate is altered. For example, if insulin is commenced or the rate of the insulin infusion is increased, do not turn down the maintenance solution to compensate for the total volume delivered. The amount of glucose being delivered to the infant will then be reduced as the insulin is commenced or dose is increased, possibly causing hypoglycaemia in an already unstable infant.

If ceasing insulin or changing the strength, be careful to remove and replace the previous line and T-piece to avoid flushing through insulin remaining in the tubing.

Administer IV bolus medication via separate IV access to avoid insulin bolus administration.

Drug Interactions
The following may reduce insulin requirements: Octreotide, beta-adrenergic blocking agents, angiotensin converting enzyme inhibitors, salicylates, anabolic steroids, alpha-adrenergic blocking agents, quinine, quinidine and sulfonamides.

The following may increase insulin requirements: Thiazides, furosemide, ethacrynic acid, glucocorticoids, thyroid hormones, sympathomimetics, growth hormone, diazoxide.

Adverse Reactions
Hypoglycaemia; hypokalaemia; and hyponatraemia.

Urticaria and anaphylaxis (extremely rare)

Insulin resistance may develop resulting in a larger dose requirement.

Compatibility
Fluids: Amino acid solution, glucose 5%, glucose 10%, glucose 50%, lipid emulsion, sodium chloride 0.9%.

Y-site administration: Amiodarone, azathioprine sodium; aztreonam; bretylium tosylate; bumetanide; bunproprione hydrochloride; calcium chloride dihydrate; calcium gluconate monohydrate; captopril sodium; cefazolin sodium; ceftizoxime; cephalosporin; chloramphenicol sodium succinate; clindamycin phosphate; cyanoacobalamin; dexamethasone sodium phosphate; enalaprilat; epirubicin hydrochloride; epoetin alfa; erythromycin lactobionate; fentanyl citrate; fluconazole; folic acid (as sodium salt); fosfomycin sodium; ganciclovir sodium; hydrocortisone sodium succinate; insulin; lidocaine hydrochloride; magnesium sulfate; mannitol; meperidine; methadone hydrochloride; methylprednisolone sodium succinate; metoclopramide; metoprolol; metronidazole; mirlirone lactate; naloxone hydrochloride; nitroglycerin; nitroprusside sodium; octreotide acetate; pancuronium bromide; penicillin G potassium; penicillin G sodium; phenobarbital sodium; phenolamine; piperacillin sodium; potassium acetate; potassium chloride; procaainamide hydrochloride; promethazine hydrochloride; propofol; pyridoxine hydrochloride; remifentanil hydrochloride; sodium bicarbonate; streptokinase; sufentanil citrate; tacrolimus; terbutaline sulfate; thiamine hydrochloride; ticarcillin; ticarcillin disodium; ticarcillin disodium–clavulanate potassium; tobramycin; vancomycin hydrochloride; vecuronium bromide; verapamil hydrochloride; voriconazole in syringe: Insulin NPH.

Incompatibility
Y-site administration: Cefoxitin; chlorpromazine; diazepam; diazoxide; dopamine; glycopyronium bromide (glycopyrrolate); isoprenaline; ketamine; labetalol; norepinephrine (norepinephrine); phentolamine; phenylephrine; phenotyin; piperacillin sodium–tazobactam sodium; polymyxin; propranolol; protamine; quinine; rocuronium; sulfamethoxazole–trimethoprim.

Stability
Actrapid: Prepared solutions are stable at room temperature (< 25°C) for 24 hours.

Humulin R: Prepared infusions can be stored refrigerated for 48 hours and may be used at room temperature for an additional 48 hours.

Novolin R: Prepared solutions are stable for 24 hours at room temperature [Micromedex].

Storage
Store human insulin preparations between 2 and 8°C. The shelf life is 30 months when stored between 2 and 8°C. Do not freeze. Human insulin preparations which have been frozen must not be used.
be used. Protect from excessive heat and light. Should appear clear and colourless. After first use, the vials may be kept at room temperature (below 25°C) for 4 weeks.

Special Comments

Insulin is incompatible with many drugs and hence should be administered via a single, dedicated line.

Insulin is adsorbed to the plastic of intravenous bags, syringes, and tubing which reduces the delivery of insulin [3-5].

Twenty mL of insulin priming solution at concentrations of 0.1 Unit/mL and 0.05 Unit/mL were found to deliver 80% and 26.5% of the expected insulin. Insulin concentrations ≤ 0.05 Unit/mL are not reliably delivered even after preconditioning and flushing [3,4].

Evidence summary

Refer to full version.

References

Refer to full version.